Tutorial 4

Differential drive vehicle following waypoints using the Pure Pursuit algorithm

- For this tutorial, you need Mobile Robotics Simulation Toolbox.
- In Matlab, go to Home>Add-Ons>
- Search 'Mobile Robotics Simulation Toolbox', and add. You need to log in to your Matlab account (if you don’t have an account create a one using UniSA email).
- After installing the toolbox, click on Home>Help>
- At the bottom of the help document, find a link to Mobile Robotics Simulation Toolbox.
- Click on the link ‘GettingStarted’
- This document provide links to very useful examples

1. Matlab Example: Waypoint following using the Pure Pursuit Algorithm (Differential Drive)
 - Click on ‘Waypoint following using the Pure Pursuit Algorithm (Differential Drive)’. This example will open in Matlab (mrsDiffDrivePurePursuit.m). Make a copy and save it as ‘mrsDiffDrivePurePursuit_YOURNAME.m’
 - Run the example and see the results.
 - Let’s understand each block of that code.

```matlab
%% Define Vehicle
Go to the help documentation and click on ‘Differential Drive’. It will open a live script. Using this live script, find answers for (i) What is forward kinematics? (ii) What is inverse kinematics?

%% Simulation parameters
tVec is set to stop after 15 Sec.

%% Define waypoints
Define any number of waypoints. First waypoint is the start position and last one is the end position.

%% Create visualizer
Go to the help documentation and click on ‘Robot Visualizer’. It will open a live script. Using this live script, find answers for (i) What are the two functionalities of Robot Visualizer? (ii) Can you use it in Simulink? (iii) What is the mandatory input and how do you represent it? (iv) What are the other inputs?

In this live script, few links are provided for related examples. Check them understand the usage of Robot Visualizer.

%% Pure Pursuit Controller

%% Simulation loop
This is the main loop. Go through the comments and understand the loop.
**Exercise:**

(i) Change $tVec$ upper limit to 35 and see what happens. Keep $tVec$ at 35 and change the simulation loop to meet this condition – the robot should stop when it is closer to less than 0.1m to the final waypoint.

(ii) At the 100th time sample, the 4th waypoint (2,4) disappears. Modify the code to accommodate this change.

(iii) Let's make the last waypoint dynamic (move up and down along x axis). Add the following code block to the end of simulation loop. Note that this is not the complete code. You need to do a minor addition to make it work.

```matlab
if count<5
 waypoints(end,2) = waypoints(end,2) + 0.2;
 count = count + 1;
end
if count>5
 waypoints(end,2) = waypoints(end,2) - 0.2;
 count = count + 1;
 if count==10
 count = 0;
 end
end
```

(iv) Now, modify your code ('mrsDiffDrivePurePursuit_YOURNAME.m') to do path planning instead of waypoint navigation as follows:

- Start position – (1.5,1.5), end position – (11,2)
- Use ‘exampleMap’ (see the next step for more info)
- When you are doing this part, comment out the codes correspond to (ii) and (iii).
- Go to the help documentation and click on ‘Path planning and following of a differential drive robot’. It will open a Matlab script. Using this script, learn how to code the path planning. Copy the necessary code from this script to your script.

2. **Simulink Example: Waypoint following using the Pure Pursuit Algorithm (Differential Drive)**

Go to the help documentation and click on ‘Waypoint following using the Pure Pursuit Algorithm (Differential Drive)’ Simulink example. A Simulink model will be opened. Run and see the results. This is the same waypoint following implementation discussed in the previous example.

Open a blank Simulink model and create a similar new model using the blocks from Simulink Library. Do not copy paste blocks from the example model, do it from the scratch. The required blocks are available in the Simulink Library, under “Mobile Robotics Simulation Toolbox”.